On Finitely Presented Expansions of Computably Enumerable Semigroups

نویسنده

  • DENIS R. HIRSCHFELDT
چکیده

Every computable universal algebra has a finitely presented expansion, but there are examples of finitely generated, computably enumerable universal algebras with no finitely presented expansions. It is natural to ask whether such examples can be found in well-known classes of algebras such as groups and semigroups. In this paper, we build an example of a finitely generated, infinite, computably enumerable semigroup with no finitely presented expansions. We also discuss other interesting computability theoretic properties of this semigroup. This paper is based on the invited talk given by B. Khoussainov at the Mal’cev meeting 2011 dedicated to the 60th birthday of Professor Sergei Goncharov.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computably Enumerable Algebras, Their Expansions, and Isomorphisms

Computably enumerable algebras are the ones whose positive atomic diagrams are computably enumerable. Computable algebras are the ones whose atomic diagrams are computable. In this paper we investigate computably enumerable algebras and provide several algebraic and computable theoretic distinctions of these algebras from the class of computable algebras. We give a characterization of computabl...

متن کامل

Π 01 - presentations of algebras ∗

Effectiveness issues in algebra and model theory have been investigated intensively in the last thirty years. One wishes to understand the effective content of model-theoretic and algebraic results, and the interplay between notions of computability, algebra, and model theory. A significant body of work has recently been done in the area, and this is attested by recent series of Handbooks and s...

متن کامل

Effective categoricity of equivalence structures

We investigate effective categoricity of computable equivalence structures A. We show that A is computably categorical if and only if A has only finitely many finite equivalence classes, or A has only finitely many infinite classes, bounded character, and at most one finite k such that there are infinitely many classes of size k. We also prove that all computably categorical structures are rela...

متن کامل

Universal computably enumerable sets and initial segment prefix-free complexity

We show that there are Turing complete computably enumerable sets of arbitrarily low non-trivial initial segment prefix-free complexity. In particular, given any computably enumerable set A with non-trivial prefixfree initial segment complexity, there exists a Turing complete computably enumerable set B with complexity strictly less than the complexity of A. On the other hand it is known that s...

متن کامل

The enumeration degrees: Local and global structural interactions

We show that the structure of the enumeration degrees De has a finite automorphism base consisting of finitely many total elements below the first jump of its least element. As a consequence we obtain that the rigidity of the structure of the enumeration degrees is implied by the rigidity of the local structures of the Σ2 enumeration degrees, the ∆ 0 2 Turing degrees and the computably enumerab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011